DR. HOMI BHABHA STATE UNIVERSITY

Program - M. Sc.

Course -Physics

Syllabus for Semesters - I, II

(Credit Based Semester and Grading System With effect from the academic year 2021-2022)

SEM	Core Courses	DE/IE/P	GE	AE	SE	Total Credits	Non-CGPA Credits
I	Mathematical Physics (MSPHCC101T) + LAB 1 (MSPHLB101P) Classical Mechanics (MSPHCC102T) + LAB 2 (MSPHLB102P) Quantum Mechanics (MSPHCC103T) + LAB 3 (MSPHLB103P)	Solid state Physics (MSPHIE101T) + LAB4 (MSPHLB104P) GE1: Scientific Programming Languages (MSPHGE101T)		AE1 Digital Electronics (MSPHAE101T)		CC: 4*3=12 P: 2*3= 6 IE: 4*1 = 4 P: 2*1=2 GE1: 2*1=2 AE: 2*1=2 Total = 28	MOOCs, Co/Extra Curricular Activities etc.
П	Electronics (MSPHCC201T) + LAB 5((MSPHLB201P) Electrodynamics (MSPHCC202T) + LAB 6 ((MSPHLB202P) Atomic and Molecular Physics (MSPHCC203T) + LAB 7((MSPHLB203P)	Numeri (MS + LAB8 (cal Techniques PHIE201T) (MSPHLB204P)		SE1 Renewable Energy Resources (MSPHSE201T)	CC: $4*3=12$ P: $2*3=6$ IE: $4*1 = 4$ P: $2*1=2$ SE: $4*1=4$ Total = 28	

MSPHCC101T: MS (M.SC.) PH (PHYSICS) CC (CORE COURSE) T (THEORY): MSPHIE101T – MS (M.SC.) PH (PHYSICS) IE1 (INTERDISCIPLINARY) T (THEORY) MSPHLB101P: MS (MASTERS) PH (PHYSICS) LB (LAB COURSE) P(PRACTICAL): MSPHGE101T: MS(MASTERS) PH (PHYSICS) GE101(GENERIC ELECTIVES) T (THEORY) MSPHAE101T: MS(MASTERS) PH (PHYSICS) AE101 (ABILITY ENHANCEMENT COURSE) T (THEORY) MSPHSE201T: MS (MASTERS) PH (PHYSICS) SE201 (SKILL EENHANCEMENT COURSE) T (THEORY)

SEM	Core Courses	DE/ID/P	GE	AE	SE	Total Credits	Non- CGPA Credits
	Statistical Mechanics (MSPHCC301T) Condensed Matter Physics	Pap AE- Electron SSP-Thir SSE- Semico MS-Fundamental	Elective Papers per I (Any one from four) ic communication (MSPHDE301T) Film Physics (MSPHDE303T) onductor Devices (MSPHDE305T) s of Materials Science (MSPHDE307T)	AE2 Python Programming (MSPHAE301T)		CC : 4*2=8 DE:4*2=8 P: 4*1 = 4 Project = 4	
III	(MSPHCC302T)	Pap AE-Transmission line and SSP- Semice SSE- Thin film : Pr MS- Nano science	er II (Any one from four) Microwave Devices (MSPHDE302T) onductor Physics (MSPHDE304T) operties and Techniques (MSPHDE306T) e and Nanotechnology (MSPHDE308T)			GE2: 2*1=2 AE2: 2*1=2 Total = 28	MOOCs, Co/Extra
		Electiv (AE-MSPHLB301P / SSP- MSPHLB304P) AE-MSPHPR301P /SS GE2- Application	e LAB (Any one from four) MSPHLB302P / SSE-MSPHLB303P / MS- PR-1 (Project) P- MSPHPR302P/SSE- MSPHPR303P / MS- MSPHPR304P s of Scientific Programming Languages (MSPHGE301T)				Curricular Activities etc.
IV	Characterization Techniques (MSPHCC401T)	Pape AE-Microwave meas SSP-Physical Pr	Elective Papers er III (Any one from four) urement & Optical Fibre Communication (MSPHDE401T) roperties of Solids (MSPHDE403T)		SEC2: Materials for Energy	CC : 4*2=8 DE:4*2=8 P:4*=4	

Nuclear Physics (MSPHCC402T)	SSE-Semiconductor Technology (MSPHDE405T) MS-Application of Materials (MSPHDE407T)		(MSPHSE401 T)	Project = 4	
				SE2: 4*1=4	
	Paper IV (Any one from four) AE-Microprocessor and Microcontroller (MSPHDE402T)			Total = 28	
	SSP-Physics of Nano materials (MSPHDE404T)			TOTAL	
	MS-Properties of Materials (MSPHDE4061)			COURSE CREDITS	
				= 112	
	Elective LAB (Any one from four)				
	(AE-MSPHLB401P/SSP-MSPHLB402P/SSE-MSPHLB403P/MS MSPHLB404P)	8-			
	PR-2 (Project)				
	AE-MSPHPR401P /SSP- MSPHPR402P/SSE- MSPHPR403P / M MSPHPR404P	1S-			

ELECTIVES: AE: APPLIED ELECTRONICS SSP/SP: SOLID STATE PHYSICS SSE/SE: SOLID STATE ELECTRONICS MS: MATERIALS SCIENCE MSPHDE3T: MS** (MASTERS) **PH** (PHYSICS) **DE** (DISCIPLINE SPECIFIC ELECTIVE) ******(ELECTIVES- AE-01-02/SP-03-04/SE-05-06/MS-07-08) T(THEORY)

	CC	DE/IE/	GE	PRACT/	AE	SE	TOTAL
		Р		PROJECT			
SEM I	12	4	2	8	2	-	28
SEM II	12	4	-	8	-	4	28
SEM III	8	8	2	8	2	-	28
SEM II	8	8	-	8	-	4	28
TOTAL	40	24	4	32	4	8	112
PERCENT	35.71	21.43	3.57	28.57	3.57	7.14	100%

Notes: There are four Electives Offered by the Department of Physics Namely: Applied Electronics, Solid State Physics, Solid State Electronics and Materials Science. Courses Selected in third Semester for a Particular Electives are Prerequisites for Courses in fourth Semester for that Specialization.

The candidate shall be awarded the degree of *Master of Science in physics* (M. Sc. in **Physics**) after completing the course meeting all the evaluation criteria. The elective course titles will appear in the statement of marks. When the elective courses are chosen from particular Electives, the statement of marks shall also carry the name of the Electives as stated below. Courses selected in third semester for particular Electives are prerequisites for courses in fourth semester for those Electives.

SEM	Core	DSE/	GE	AEC	SEC	Lab/Projects	Non-CGPA	Total Credits
	Courses	ID						
	Credits: 1	Credits: 1	Cradits.2	Cradits.2	Credits: 1	Credits*no of Lab/Projects= Total Credits		
	CTeuris. 4	Cicuits. 4		Creats.2	Cicuits. 4	Total Creuits	MOOC's	CC: 4*3=12
	CC102					2 Credits * 4 Lab = 8 Credits		ID: 4*1 =4
т	CC102	ID101	CF101	AE101			and/or	GE: 2*1=2
1	CC103		GEIVI			(50+50+50+50=200 Marks)	Co/Extra	AE: 2*1=2
								Lab = 8
	CC201						MOOC's	1 otal = 28
	CC201					2 Credits * 4 Lab = 8 Credits	mooc s	ID $\cdot 4*1=4$
п	CC202	ID201			SE201		and/or	SE: 4*1=4
						(50+50+50+50=200 Marks)	Co/Extra	Lab = 8
	CC203							Total = 28
						4*1 (1 Lab) + 4*1(Lab)=8		CC - 4+2-9
	CC301	DE301				OR		$CC: 4^2=8$
						4*1 (1 Lab) + 4*1(Project)=8		$DE: 4^{-2}-6$ GE: 2*1=2
III	CC302		GE301	AE301		OR		AE: 2*1=2
		DE302				4*1 (1 Project) + 4*1(Project)=8		Lab + Projects = 8
						(100+100 - 700 Marks)		Total = 28
						$\frac{(100+100-200 \text{ Warks})}{4*1 (1 \text{ Lab}) + 4*1(1 \text{ ab})=8}$		
	CC401					OR		CC: 4*2=8
		DE401				4*1 (1 Lab)+4*1(Project)=8		DE: 4*2=8
IV					SE401	OR		SE: $4^{1}=4$
1 V						4*1 (1 Project)+4*1(Project)=8		Total = 28
	CC402	DE402						
						(100+100 =200 Marks)		Course Credit = 112

Course Structure of the M.Sc. Programme of HBSU (From 2021-2022)

DR HOMI BHABHA STATE UNIVERSITY: M.Sc. Result Sheet															
							МА	RKS							
SEM	COURSE		COURSE TITLE	CREDITS	INTERNAL			EXTERNAL					EARNED	GRADE POINT	CG
					МАХ	MIN	OBT	МАХ	MIN	OBT	МАХ	OBT	с	GP	C*GP
		CC101		4	40	16		60	24		100				
	CORE	CC102		4	40	16		60	24		100				
	0001102	CC103		4	40	16		60	24		100				
	ID	IE101		4	40	16		60	24		100				
	AEC	AE101		2	20	8		30	12		50				
1	GE	GE101		2	20	8		30	12		50				
	LB	LAB101		2	-	-	-	50	20		50				
ľ	LB	LAB102		2	-	-	-	50	20		50				
ľ	LB	LAB103		2	-	-	-	50	20		50				
ľ	LB	LAB104		2	-	-	-	50	20		50				
				28	200			500			700				
	SEME	STER – I:	TOTAL	CREDITS= 28	8			1	то	FAL MA	RKS = 70	0 ОВ	TAINED=	/700	
		CC201		4	40	16		60	24		100				
	CORE	CC202		4	40	16		60	24		100				
	COURSE	CC203		4	40	16		60	24		100				
	ID	ID201		4	40	16		60	24		100				
	SEC	SE201		4	40	16		60	24		100				
П	LB	LAB201		2	-	-	-	50	20		50				
	LB	LAB202		2	-	-	-	50	20		50				
	LB	LAB203		2	-	-	-	50	20		50				
	IB	LAB204		2	-	-	-	50	20		50				
		L10204		28	200			500	20		700				
	SEME	STER – II·	τοται	CREDITS= 28	200			500	то	ται Μα	RKS = 7	00 OB	TAINED=	/700	
	COD5	CC301	101742	4	40	16		60	24		100			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	CORE	CC302		4	40	16		60	24		100				
		DE301			40	16		60	24		100				
	DSE	DE301		4	40	16		60	24		100				
		AE201			20	0		20	12		50				
	GE	GE201		2	20	0		30	12		50				
-				2	20	0		100	12		100				
}				4	-	-	-	100	40		100				
ł	LD/FK	LAB/FR302		- 4	- 200	-	-	500	40		700				
	SEME		τοται		200			500		TAL 844	700 ARKS - 7			/700	
	SEIVIE	STER - III:	TUTAL		40	10		60	24		100			//00	
	CORE	CC401		4	40	10		60	24		100				
	COONSE	0.0402		4	40	16		60	24		100				
	DSE	DE401		4	40	16		60	24		100				
IV	655	DE402		4	40	16		60	24		100				
	SEC	SE401		4	40	16		60	24		100				
	LB/PR	LAB/PR401		4	-	-	-	100	40		100				
-	LB/PR	LAB/PR402		4	-	-	-	100	40		100				
				28	200			500			700				
	SEME	STER – IV:	TOTAL	CREDITS= 2	8				то	TAL MA	ARKS = 7	00 OE	BTAINED=	/700	

Semester-I

	Course Code: MSPHCC101T	Course Title: Mathematical Physics					
	Course Credit: 4	Total Contact Hours: 60 Hours					
Sr. No.	Course Contents (Topics &Su	lbtopics)	Reqd. Hours				
1	Unit I						
	Matrices: Matrices Eigen values Eigen Vectors, Inner Product, Orthogonality, Unitary Hermitian Matrices, Diagonalization of Matrices, Applications to Physics Problems. Introduction to Tensor Analysis, Addition Subtraction of Tensors, Summation Convention, Contraction, Direct Product, Symmetric Antisymmetric Tensors, Kronecker Delta, Tensors in Physics-Moment of Inertia Tensor.						
2	Unit II		15				
	Complex Variables: Complex Variables, Complex Functions, Cauchy-Riemann Form of Cauchy-Riemann Exponential Function, Trigor Singular Points, Cauchy's T Taylor's Laurrent's Series, Residues at Poles, Zeroes Evaluation of Improper Real Sines Cosines.	a Differentiation- Derivatives, Analytic Equations, Harmonic Functions, Polar Equations, Elementary Functions- nometric Function, Limits, Continuity, heorem, Cauchy's Integral Theorem, Residues, Cauchy's Residue Theorem, Poles of Order M, Contour Integrals, Integrals, Improper Integral Involving	Hours				
3	Unit III		15				
	Differential Equations:EGeneral Treatment of Second Order Linear Differential Equations with Non-Constant Coefficients, Power Series Solutions, Frobenius Method (Series Integration Method), Linear Oscillator Equation, Forced Oscillator Resonance, Legendre, Hermite Laguerre Polynomials, Bessel Equations, Non-Homogeneous Equation – Green's Function						
4	Unit IV		15				
	Transformations: Integral Transforms-three I Applications to PDEs (Green F Theorem, Parseval's Relation, of Derivatives, Inverse Laplac of Laplace's Transform in Solv	Dimensional Fourier Transforms its Function of Poisson's PDE), Convolution Laplace Transforms, Laplace Transform e Transform Convolution Theorem, Use ing Differential Equations,	Hours				
	Suggested Readings						
	 Matrices Tensorsin Phy International. Mathematical Methods Wiley. Advanced Engineering 1 Mathematical Physics: A 2007. Mathematical Methods Edition-Academic Press 	sics, a. W. Joshi, 4 Th Edition, New Age in the Physical Sciences – M. Boas, Mathematics – E. Kreyszig, Wiley. dvanced Topics, S. D. Joglekar Crc Press for Physicists – Arfken & Weber – 6th					
	6. Mathematical Physics, A	A. K. Saxena, Narosa Publications					

Course Outcomes:

Students will Learn Mathematical Methods Their Application in Physics. Important Concepts Such as Linear Dependence Independence of Vectors Matrices, Number of Independent Parameters of Various Special Matrices, Second Higher Order Tensors, Special Polynomials, Laplace Transform Needed in Quantum Mechanics, Electrodynamics Etc.

	Course Code:	Course Title: Lab Course 1						
	Course Code.	Course Thie. Lab Course -1						
	MSPHLB101P	Minimum Number of Experiments to be Performed						
		Reported in the Journal $= 04$						
	Course Credit: 2	Total Contact Hours: 60 Hours						
Sr.	C	ourse Contents (Topics & Subtopics)						
190.								
1	Double Slit- Fraunhof	er Diffraction (Missing Order Etc.)						
2	Resistivity of a Semic	onductor Using Four Probe						
3	Temperature Depende	nce of Avalanche Zener Breakdown Diodes						
4	Susceptibility Measurement by Quincke's Method / Guoy's Balance Method							
5	Absorption Spectrum of Specific Liquids							
6	Determination of Veloc	ity of Ultrasonic Waves in a Given Liquid Using						
	Ultrasonic Interferome	eter						
7	Diffraction at Single I	Oouble Slits Using Laser Source.						
8	LVDT Characteristics							
9	Dielectric Constant of	Liquids						
10	Solution of Linear Equations Using OCTAVE/SCILAB/MATLAB							
11	Solution of First	Order Second Order Differential Equation Using						
	OCTAVE/SCILAB/M	ATLAB						
12	Uranium Decay Using	OCTAVE/SCILAB/MATLAB						

	Course Code:	Course Title: Classical Mechanics						
	MSPHCC102T							
	Course Credit: 4	Total Contact Hours: 60 Hours						
Sr.	Course Contents (To	mics & Subtanics)	Reqd.					
No.								
1	Unit I							
	Lagrangian Formula	ition. Hamilton's Principle:	Hours					
	Review of Newton's	Laws, Mechanics of a Particle, Mechanics of a						
	System of Particles, Frames of References, Rotating Frames, Centrifugal							
	Coriolis Force, Constraints, D' Alembert's Principle Lagrange's							
	Equations, Velocity-Dependent Potentials the Dissipation Function,							
	Principle Calculus of	f Variations Derivation of Lagrange's Equations						
	from Hamilton's Prin	ciple Lagrange Extension of Hamilton's Principle						
	Irom Hamilton's Principle, Lagrange, Extension of Hamilton's Principle							
	formulation	systems, ruvunuges or a variationar rimeipie						
2	Unit II		15					
-	Central Force Proble	e m :	Hours					
	two Body Problem, t	he Equation of Motion First Integral, Equation of						
	Orbit, Kepler's Laws	s, Kepler's Problem, General Analysis of Orbits,						
	Stability of Orbits	, Artificial Satellites, Rutherford Scattering:						
	Differential Scatterin	ng Cross – Section, Rutherford Formulae for						
	Scattering.							
3	Unit III		15					
	Variational Principle	e and Hamiltonian Formulation:	Hours					
	Hamilton's Principle,	Hamiltonian, Generalized Momentum, Constant of						
	Motion, Hamilton's	Canonical Equations of Motion, Deduction of						
	Canonical Equations	s from Variational Principle, Applications of						
	Hamilton's Equations	s of Motion. Principle of Least Action, Proof of						
4	Unit IV	1011.	15					
4	Ullit IV Canonical Transform	nations and Hamilton's Jacobi Theory	15 Hours					
	Generating Function	Illustrations of Canonical Transformations	110015					
	Condition for Trans	formation to be Canonical Examples Poisson's						
	Brackets, Poisson's	Theorem Properties of Poisson's Brackets						
	Hamilton's Canonica	al Equations in Terms of Poisson's Brackets.						
	Hamilton's – Jacobi T	Theory, Solution of Harmonic Oscillator Problem by						
	Hj Method.							
	Suggested Readings:							
	1. Classical Mec	hanics, by H Goldstein (Addison Wesley 1980).						
	2. Classical Mec	hanics, by N C Rana P S Joag (Tata McGraw Hill						
	1991).							
	3. Introduction to	O Classical Mechanics, by R G Takwale P S Puranik						
	(Tata McGraw	(IIII 1999).						
	4. Ulassical Me Drokoshon 200	conanics, by Gupta, Kumar Snarma (Pragati						
	i takasilali 200	vo).						
	Course Outcomes							
	Course Outcomes.							

Students will understand the discipline-specific knowledge in classical	
mechanics, covering the subjects basic concepts of classical mechanics,	
Newton's laws applications, Lagrange's equations Hamilton's Equation	
their applications. Students shall be able to use Newtonian, Lagrangian	
Hamiltonian methods for solving mechanics problems	

	Course Code:	Course Title: Lab Course -2				
	MSPHLB102P	Minimum Number of Experiments to be Performed Reported in				
		the Journal $=$ 04				
	Course Credit: 2	Total Contact Hours: 60 Hours				
Sr.		Course Contents (Tonics & Subtonics)				
No.		Course Contents (10pics & Subtopics)				
1	Verification of Sta	ate Tables of R-S Flip-Flop, J - K Flip-Flop, T Flip-Flop, D Flip-Flop				
	Using NAND, NO	DR Gates.				
-						
2	Half and Full Ad	der-Subtractor Circuits Using ICs.				
3	Verification of State Tables T Flip-Flop, D Flip-Flop Using NAND, NOR Gates.					
4	Shift Register Usi	ng ICSN54AS194				
5	Study of Presental	ble Counters - 74190, 74193				
6	Study Four Bit Binary Adder Subtractor Using IC7483, IC7486					
7	Study of Mod Counters Using IC- 74190,74193					
8	Study of Multiplexer Using IC74151, 74153, 74157.					
9	Study of De Mul	tiplexer Using IC SN74LVC1G19, 74139, 74138, 74154				
10	Study of Encoder	Decoder Using IC74HC147, 74139, 74138, 74154				

	Course Code:	Course Title: Quantum Mechanics	
	MSPHCC103T		
	Course Credit: 4 Total Contact Hours: 60 Hours		
Sr. No.	Course Contents (Topics & Subtopics)		
1	Unit I		
	General Formalism and Mathematical Tools of Quantum Mechanics: - Schrödinger Time Dependent Time Independent Equation, Physical Significance of Wave Function, Quantum Numbers, Physical Significance of Eigen Function Eigen Value, Completeness of Eigen Functions, Dirac Delta Function its Properties, Ket Bra Notations, the Linear Vector Space, the Hilbert Space, Dimension Basis of a Vector Space, Linear Operators, Commutation Relation for Position Momentum Operator, Hermitian Operators Properties, Matrix Representation of Kets, Bras, Operators, Change of Bases Unitary Transformations, Matrix Representation of the Eigenvalue Problem, Parity Operator its Eigenvalues, Matrix Mechanics Wave Mechanics, Postulates of Quantum Mechanics, the State of a System - Probability Density the Superposition Principle, Observables Operators, Expectation Values, Connecting Quantum to Classical Mechanics – Poisson brackets		
2	Mechanics.		15
	Angular Momentum: Orbital Angular Momentum, Commutation Relations for Spin, Orbital total Angular Momentum Ladder Operators, Eigen Values of L ² , L _z , J ² , J _z , J ₋ , Angular Momentum Rotations, Rotational Symmetry Conservation of Angular Momentum, Reflection Invariance Parity, Addition of Angular Momentum-General Formalism, Clebsch Coefficient for J ₁ =J2=1/2, J ₁ =1 J ₂ =1/2, Angular Momentum Matrices, Pauli Spin Matrices, Spin Eigen functions, Free Particle Wave function Including Spin, Addition of two Spins.		
3	Unit III		15
	Approximation Methods:(a) Time Independent Perturbation Theory: Non-Degenerate Case- FirstOrder Perturbations, Second Order Perturbation, Application for the HeAtom, Degenerate Perturbation Theory Stark Effect. (B) Time dependentPerturbation Theory: Zero Order Perturbation, First Order Perturbations,Second Order Perturbation, Fermi Golden Rule, Adiabatic and SuddenApproximation. the Pictures of Quantum Mechanics - the SchrödingerPicture, the Heisenberg Picture, the Interaction picture (C) VariationalMethod: The Basic Principle, Application for He Atom (D) WKBApproximation: The Classical Limit, One Dimensional Case, ConnectionFormulae, The Turning Point Application to Barrier Potential.		
4	UIIILIV Theory of Sectioning		13 Hours
	Theory of Scattering: Relation Between Angles and Cross Section in Laboratory and Centre of Mass Reference Frames, Scattering Amplitude, Differential Total Scattering Cross Section, Scattering by Spherically Symmetric Potentials, Integral Equation of Scattering. The Born Approximation, Partial Wave		

Analysis Phase Shifts, Optical Theorem, Scattering by a Perfectly Rigid Sphere by Square Well Potential, Identical Particles, Identical Particles in Classical Quantum Mechanics Many Particle System- Schrödinger Equation, Interchange Symmetry, Systems of Distinguishable Non- interacting Particles, Constructing Symmetric Asymmetric Wave		
Factions. Systems of Identical Non-interacting Particles.		
Suggested Readings:		
 Quantum Mechanics Concepts Applications by Nouredine Zettili, Wiley Publications. Introduction to Quantum Mechanics by D. J. Griffiths, Phi Learning Pvt. Ltd. Introductory Quantum Mechanics by Richard Lib off, Pearson. Quantum Mechanics by G. Aruldhas (Phi Learning Private Limited). Quantum Mechanics by Gupta, Kumar, Sharma (Jai Prakash Nath & Co. Meerut). 		
6. Quantum Mechanics by Satya Prakash.		
Course Outcomes:		
by way of studying Quantum Mechanics the students can have an insight into the understanding of physical phenomenon since most of the phenomenon in Solid State Physics, atomic molecular physics, nuclear physics have been explained were placed as firm footing using Quantum Mechanical explanation. They will also have knowledge about the approximation methods studied in this course which is now-a-days used in various molecular modelling softwares.		

	Course Code: MSPHLB103P	Course Title: Minimum Nu	Lab Cours mber of Ex	e-3 periments to	be Perforn	ned
		Reported in th	ne Journal =	- 04		
	Course Credit: 2	Total Contact	Hours: 60	Hours		
Sr. No.	Co	ourse Co Subtopics)	ontents	(Topics		
1	Study of He-Ne Laser	Measurement	of Divergen	ce Waveleng	gth.	
2	h/e by Photocell.					
	DC Hall Effect.					
3	Solar Cell.					
4	Characteristics of a Geiger Muller Counter Measurement of Dead Time.					
5	Michelson's Interferometer.					
6	Measurement of Dielectric Constant, Curie Temperature Verification of Curie Weiss Law for Ferroelectric Material.					
7	Analysis of Sodium Sp	ectrum				
8	Barrier Capacitance of	Junction Diod	e			
9	Carrier Lifetime by Pu	lsed Reverse M	lethod			
10	Potentials Fields N	ear Electric	Charges,	Poisson's	Equation	Using
	OCTAVE/SCILAB/MA	ATLAB				
11	Time Independent	Schrodinger	Equation.	Shooting	Method	Using
	UCIAVE/SCILAB/IMA	AILAD				
12	Wavepacket Construct	ion Using OC	ΓAVE/SCII	LAB/MATL	AB	

	Course Code: MSPHIE101T	Course Title: Solid State Physics	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No	Course Contents (Topics & Subtopics)		Reqd. Hours
1	Unit-I		
	Diffraction of Waves by Crystals and Reciprocal Lattice: Bragg Law, Scattered Wave Amplitude Fourier Analysis, Reciprocal Lattice Vectors, Diffraction Conditions, Brillouin Zones, Reciprocal Lattice to SC, BCC FCC Lattice. Interference of Waves, Atomic form Factor, Elastic Scattering by Crystal, Ewald Construction, Structure Factor, Laue Method, Rotating Crystal Method, Powder Method of X-Ray Diffraction.		
2	Unit-II		15
	Lattice Vibrations and Thermal Properties: Vibrations of Monoatomic Lattice, Normal Mode Frequencies, Dispersion Relation. Lattice with two Atoms per Unit Cell, Normal Mode Frequencies, Dispersion Relation, Quantization of Lattice Vibrations, Phonon Momentum, Inelastic Scattering of Neutrons by Phonons, Surface Vibrations, Inelastic Neutron Scattering. Anharmonic Crystal Interaction. Thermal Conductivity Lattice Thermal Resistivity, Umklapp Process, Imperfections.		
3	Unit III		
	Semiconducting and Superconducting Properties:Semiconductors: Energy B Gap, Effective Mass, Intrinsic CarrierConcentration, Conductivity of Semiconductors, Impurity Levels inDoped Semiconductors.Superconductors: Critical Temperature, Meissner Effect, Type-I Type-IIII Superconductors, BCS Theory of Superconductivity, FluxQuantization, Josephson Effect, Squid, High-Tc Superconductivity.		
4	Unit IV		15
	Dielectric and Magn Dielectrics: Polarizati Field, Clausius M Catastrophe, Types o of Diamagnetism, C Exchange Interaction Ferrimagnetism), We Domains.	etic Properties: on Mechanism, Dielectric Constant, Lorenz Cavity ossotti Relation, Ferroelectricity, Polarization of Ferroelectrics, Piezoelectrics. Magnetics: Theory Classical Quantum Theories of Paramagnetism, ons, Magnetic Order (Ferro Anti Ferro eiss Theory of Ferromagnetism, Ferromagnetic	Hours
	Suggested Readings:		
	 Charles Kittel John Wiley & Solid State Ph M. A. Waha Materials" Na M. Ali Omar (LPE). H. Ibach H. Lu to Principles o 	"Introduction to Solid State Physics", 7th Edition Sons. ysics by a. J. Dekker, Macmillan India Ltd. (1986). b "Solid State Physics –Structure Properties of rosa Publications 1999. "Elementary Solid State Physics" Addison Wesley uth 3rd Edition "Solid State Physics an Introduction of materials Science" Springer.	

on completion of the course, the student shall be able to explain the basic
concepts that are used to describe the structure physical properties of
crystalline substances, use physical models to perform calculations of the
properties of solids, understand the phenomenon of dielectric magnetic
materials etc.

	Course Code:	Course Title: Lah Course -4	
	MCDIII D104D	Minimum Number of Experiments to be Derformed	
	MSPHLB104P	Minimum Number of Experiments to be Performed	
		Reported in the Journal $= 04$	
	Course Credit: 2	Total Contact Hours: 60 Hours	
Sr. No.	Course Contents (Topics & Subtopics)		
1	JFET Characteristics		
2	Static Characteristics of SCR.		
3	Design, Build Test Astable /Monostable Multivibrator Using IC741/ IC555.		
4	Design, Build Test First Order & Second Order Low Pass Filter Using IC741.		
5	Design of Regulated Power Supply Study its Line Load Regulation Using ICLM317.		
6	Voltage to Frequency / Frequency to Voltage Converter Using Op-Amp		
7	Design, Build Test the Temperature to Frequency Converter Using IC741/IC		
8	FET Characteristics D	esigning of Amplifier.	
9	TTL Characteristics.		
10	Delayed Linear Sweep Using IC 555.		

	Course Code:	Course Title: Scientific Programming Languages		
	MSPHGE101T			
	Course Credit:	Total Contact Hours: 30 Hours		
C	2		Dend	
Sr. No	Course Contents	s (Topics & Subtopics)	Reqa. Hours	
1	Unit I			
	Brief Review	of Scientific Computing Language-OCTAVE.	Hours	
	MATLAB, SciLa	ab etc.		
	Environment of	Scientific Programming: Local Environment Setup,		
	Variables - Cre	ating Variables, Special Variables Constants, Over		
	writing Variable,	, Error Messages, Making Corrections. Data Types -		
	Data Types Ava	ilable, Data Type Conversion, Determination of Data		
	Types, Numbers,	Conversion to Various Numeric Data Types, Smallest		
	Largest Integers,	Smallest Largest Floating-Point Numbers. Commonly		
	Used Operators,	Arithmetic Operators, Relational Operators, Logical		
	Operators, Bitwi	ise Operations, Set Operations, Special Characters,		
	Controlling the F	lierarchy of Operations or Precedence, Controlling the		
	Appearance of I	Hoating-Point Number. Work Space - Managing the		
	Workspace, Keep	ping Irack of Your Work Session, Entering Multiple		
2	Statements Per Li	ine.	0	
<u> </u>	Unit II Arrey Operation	a Matrix Concration	0 Hours	
	Array Functions- Length Dimension Number of Flements Circular			
	Shifting of the Array Elements Sorting Arrays Cell Array Accessing			
	Data in Cell Arrays, Strings, Rectangular Character Array, Combining			
	Strings into a Cell Array.			
	Vectors - Creating Vectors, Row Vectors, Column Vectors.			
	Matrix - Creating Matrices, Vector, Matrix Indexing, Colon Operator,			
	Linear Spacing, Colon Operator in a Matrix, creating a Sub-Matrix,			
	Deleting Row o	or Column, Dimension, Continuation, Transposing a		
	Matrix, Concater	nating Matrices, Matrix Functions, Matrix Generators,		
	Special Matrices. Matrix Arithmetic Operations, Array Arithmetic			
	Operations, Matri	ix Inverse.		
3	Unit III		7	
	Scripts File:		Hours	
	File, Creating Sav	ving Script File, Running Script File, Current Directory,		
	Search Path. Sco	pe of Variables, Passing Parameters, Global Variables.		
	Command the	finite Command Opening Closing Files Writing		
	Formatted Output	<i>Jprinij</i> Communa, Opening Closing Files, writing		
	Files Debugging	Process Preparing for Debugging Setting Breakpoints		
	Running with I	Breaknoints, Examining Values Correcting Ending		
	Debugging. Endi	ng Debugging, Correcting File.		
4	Unit IV	8 88 87 8	7	
_	Function Files:		Hours	
	Functions, Anon	ymous Functions, Primary Sub-Functions. Recursive		
	Functions, String	g Functions. Creating a Function File, Structure of		
	Function File, Fu	unction Definition Line, Input Output Arguments, The		
	H1 Line Help Text Lines, Function Body, Local Global Variable, saving			

a Function File, Using a Function Example of Simple Function File,	
Comparison Between Script File Function Files, Inline Function, the	
feval Command.	
Suggested Readings	
1. Programming in MATLAB by Marc E. Hermitter, Thomson Brooks	
2 MATLAB Programming by Rudranratan D Attaway S	
3. a Practical Introduction to Programming Problem Solving.	
Edition/Publisher: Third Edition. Elsevier. San Fransisco.	
4. MATLAB: a Practical Introduction to Programming Problem-	
Solving Book by Stormy Attaway, Paperback ISBN: 9780128154793 Elsevier Com	
5. MATLABfor Beginners a Gentle Approach Revised Edition Peter	
I. Kattan Petra Books.	
6. Getting Started with MATLAB: A Quick Introduction for	
Scientists & Engineers Paperback – 1 January 2010 by Rudra	
Pratap (Author).	
7. MATLAB Programming for Engineers 6th Edition by Stephen J	
Chapman, Cengage India.	
8. MATLAB with Applications to Engineering, Physics Finance	
Hardcover – Import, 30 October 2009 by David Baez-Lopez	
(Author).	
9. Scientific Computing With Matlab And Octave 4Th Edition by	
Allio Quarteroni and Paola Gervasio and Fausto Saleri,	
10 Introduction to Octave: For Engineers and Scientists by Sandeen	
Nagar	
11 MATLAB Guide Third Edition Desmond I Higham Nicholas I	
Higham.	
12. MATLABfor Engineering Applications William Palm.	
13. Advanced Programming in Scilab, by Jain.	
14. Scilab A Beginner'S Approach by Anil Kumar Verma, Cengage	
India.	
15. Scilab from Theory to Practice - I. Fundamentals (English,	
Paperback, Roux Philippe).	
16. Octave/Matlab Primer and Applications, by Nakamura S.	
17. Programming for Computations - MATLAB/Octave, by Linge	
Svein, Publisher: Springer International Publishing AG	
Course Outcomes:	
After successful completion of the course student will be familiar with	
the basics of Scientific Programming and its environment. Students will	
understand basics of Scientific Programming, operators' special	
windows and will also aroute rows columns of matrices. They	
will understand how to use files functions in Scientific Programming	
windows and will also create rows, columns of matrices, arrays. They will understand how to use files, functions in Scientific Programming.	

	Course Code: MSPHAE101T	Course Title:	Digital Electronics	
	Course Credit: 2	Total Contact Hours:	30 Hours	
Sr. No.	Course Contents (Topics &	Subtopics)		Reqd. Hours
1	Unit I			8
	Multiplexers and Demultiple Multiplexer: Types of Mul Checker, Parity Generators, Multiplexer: Types of Demu 7447, 74138, Implementation	lexers: tiplexers2:1, 4:1, 8:1 Code Converters, Mag iltiplexers 1:2,1: 4, 1:8 n of K-Map on Combina	16:1, Encoders,Parity nitude Comparator.De- 1:16, Decoder IC7445, ational Circuits.	Hours
2	Unit II			7
	Flip Flops: Introduction to Flip Flops, Type Flip-Flop Using RS- F JK- Flip - Flop - JK Master JK- Flip-Flop.	Bi-Stable Multi-Vibrat Ilip-Flop, Edge Trigger Slave Flip - Flops, D	tor, RS Flip- Flop, D- ring, Level Triggering, -Type Flip-Flop Using	Hours
3	Unit III			7
	Shift Registers:IIntroduction to Shift Registers, Types of Shift Registers, SIPO, PISO, SISO, PIPO, Universal Shift Operations Using Various ICs, Controlled Buffers, Unidirectional &Bidirectional Controlled Buffers. Implementation of K-Map on Sequential Circuits.			Hours
4	Unit IV:			8
	Counters Types of Counters, As Asynchronous Up / Down C 2, Mod-4, Mod-10, Mod-12, Synchronous Counters, three / Down Counters, Designing	synchronous, three-B ounter, Modulus of Co Mod-16 Counters). Cas -Bit Synchronous Cou of Synchronous Counte	Bit Ripple Counter, bunter (Examples Mod- scaded Ripple Counter, nters, Synchronous Up ers Using K-Maps.	Hours
	Suggested Readings			
	 Handbook of Electron Digital Principles Ap Paul Malvino. Modern Digital Electric Digital Fundamentals Digital Fundamentals Digital Electronics by Fundamentals of Log. 	nics, Gupta Anand Kum plications by Malvino ronics, R.P. Jain, 4th Ec by Morris Mano, Phi F Thomas L. Floyd, 10th Anil Kumar Maini. ic Design by Charles H	har. Donald P Leach Albert dition, Mc Graw Hill. Publication. n Edition, Pearson. . Roth Thomson.	
	Course Outcomes:			
	After successful completion design digital combinational and implementation of comb of flip flop and applications of registers, synchronous, async	of the course studen l circuits multiplexers pinational circuits. Des of flip flop. Designing i hronous and sequential	t will be able analyse demultiplexers design signing implementation implementation of shift circuits.	

Semester-II

	Course Code:	Course Title: Electronics	
	MSPHCC2011 Course Credit: 4	Total Contact Hours 60 Hours	
Sr	Course credit. 4 Total Contact Hours. 00 Hours		
No.	Course Contents (Topics &Subtopics)		
1	Unit I		
	Semiconductors:		
	Brief Idea About B Theory of Semiconductor, Conduction Mechanism,		
	Carrier Concentration	n Mobility, Effect of Temperature on Electrical	
	Conductivity, Intrins	ic Semiconductors, Carrier Concentration in an	
	Intrinsic Semiconductor, Conduction Valance Band, Carrier		
	Concentration in Terms of Band Gap, Electrical Conductivity, Generation		
2	Unit II	arges, Extraisie Senneonductor-1 Type N Type,	15
2	Semiconductor Devi	ces:	Hours
	BJT. Field Effect	Transistors-JFET. MOSFET Related Devices.	liouis
	MESFET- Device S	Structure Working. Switching Characteristics of	
	Transistor, Astable, N	Ionostable Bistable Multivibrators, Special Purpose	
	Diodes Other Device	s: LED, Schottky, Varactor, Tunnel, Photo Diodes,	
	Photoconductive Cel	ll, LCD (Liquid Crystal Display), Solar Cell,	
	Thermistor, SCR, UJ	, Photo Transistor.	15
3	Unit III Operational Amplifi	AP1	Hours
	Block Diagram of a Typical On-Amp its Characteristics Applications of		
	Op-Amp - DCAC Amplifier, Summing, Scaling Averaging Amplifiers.		
	Instrumentation Amplifier, Integrator Differentiator, Function Generator		
	Using two OPAMP with Variable Controls, Astable Monostable		
	Multivibrators Using OPAMP, Timer IC 555: Applications as PAM,		
	PWM, FM FSK Generator. Phase Leaked Leon (IC 5(5): Plack Discrete Working Applications		
	Phase Locked Loop (IC 565): Block Diagram Working Applications as Em Detector, ESK Detector, Frequency Multiplier Frequency Translator		
	Voltage Controlled O	scillator (IIC 566): Block Diagram Working	
	Oscillator: Principles	s. Oscillator Types, Frequency Stability, Response.	
	Phase Shift Oscillator	, Wein Bridge Oscillator, L C Tuneable Oscillator.	
		-	
4	Unit IV		
	Logic Gates, Boolean	Algebra, Minimization Technique and K-Maps:	15 Hours
	Nor Ex-or Ex-Nor E	Boolean Algebraic Methods Rules Limitations De-	nours
	Morgan's Theorem.	Boolean Expression. N–Nor Implementations,	
	Simplification of Log	ic Operations Using Boolean Algebra De Morgan's	
	Theorems, 1's, 2's	Complementation 1's, 2's Complementation	
	Subtraction Methods.	Binary Codes Like BCD Code, Gray Code, Excess-	
	3 Code. Minimizatio	on of Boolean Expressions, Minterms, Maxterms,	
	Sum of Products (SC	DP), Product of Sums (POS), Karnaugh Map (K-	
	Map), Minimization,	Don't Care Conditions.	
	Subtractor Parallel F	Sinary Adder Parallel Rinary Subtractor Four-Rit	
	Binary Adder/Subtrac	tor.	

Suggested Readings	
1. Power Electronics Circuits, Devices Applications, 3rd Edition by	
Muhammad H. Rashid, Pearsons Publications	
2. Electronic Devices Circuits: An Introduction by Allen Mottershed	
3. Hbookof Electronics, Gupta Kumar.	
4. Solid State Electronic Devices, 6th Edition, by Ben G. Streetman	
4. Operational Amplifiers, 5th Edition by G.B. Clayton.	
5. Linear Integrated Circuits, 4th Edition by Roy Choudhari.	
6. Design withOPAMPs Analog Integrated Circuits by Sergio	
Franco.	
7. Op-Amps Linear Integrated Circuits, Ramakant a.Gayakwad, Phi	
Learning Private Limited.	
8. Digital Electronics by R.P. Jain.	
9. Digital Principles & Applications by Albert P Malvino Leach,	
Tata McGraw-Hill Delhi, 8 th Edition, 2015.	
10. Digital Electronics: An Introduction to Theory Practiceby W.H.	
Gothman.	
11. Digital Design by M. Morris Mano, Michael D. Ciletti, Pearson	
Education Asia, 4 Th Edition 2011 / International Edition 2013.	
12. Digital Fundamentals Thomas L. Floyd, 10th Edition, Pearson	
Course Outcomes:	
After Successful Completion of the Course Student will be able to	
Analyse Semiconductors, Types of Semiconductors, Charge Mobility in	
Semiconductors. Student will Understand the Concept of Semiconductor	
Devices, Types of Semiconductor Devices Their Applications. Students	
will Analyse Characteristics Applications of OPAMP, Students will	
Demonstrate Knowledge of 555 Timer Design Analyse of Electronic	
Circuits Using OPAMP. Students Also Analyse Implementation of	
OPAMP as an Oscillators, Students Can Design Implement	
Combinational Logic Circuits Simplification of Logic Circuits Using	
Boolean Identities, Laws Rules. Student Also able Implement K-Map	
Simplifications of Logic Arithmetic Combinational Circuits.	

	Course Code:	Course Title: Lab Course -5	
	MSPHLB201P	Minimum Number of Experiments to be Performed Reported	
		in the Journal = 04	
	Course	Total Contact Hours: 60 Hours	
	Credit: 2		
Sr.	C	ourse Contents (Tenies & Subtenies)	
No.	Ľ	ourse Contents (1 opics & Subtopics)	
1	Function Genera	tor Using IC-8038.	
2	PLL Application Using IC 565.		
3	Study of 8 Bit DAC.		
4	Design, Built Test Oscillator - Wien Bridge Oscillator / Phase Shift Oscillator		
	Using Op-Amp.		
5	Constant Curren	t Source Using Op-Amp	
6	To Observe the Characteristics of UJT Relaxation Oscillator		
7	SCR Digital Triggering Circuit for a Single Phase Controlled Rectifier AC		
	Voltage Regulator.		
8	Instrumentation Amplifier with Thermocouple Transducer Ad-590.		
9	Capacitance Measurement Using IC555.		
10	Microwave Oscillator Characteristics.		

	Course Code: MSPHCC202T	Course Title: Electrodynamics		
	Course Credit: 4	Total Contact Hours: 60 Hours		
Sr. No.	Course Contents (Topics & Subtopics)			
1	Unit I			
	Maxwell's Equations, Energy in Electromagnetic Fields (Poynting Theorem), Electromagnetic Waves in Free Space, Matter, Non-conducting Media (Isotropic Dielectric), Anisotropic Dielectric, Conducting Media, Ionized Gases. Polarization of Electromagnetic Waves, Skin Depth.			
2	Unit II		15	
	Interaction of Electromagnetic Electromagnetic Field Vectors Refraction at the Boundary o Oblique Incidence, Propagati Planes, Waveguides, TE, TM Scattering by a Bound Incoherenceof Scattered Light	c Waves with Matter: Boundary Conditions for s at the Interface Between two Media, Reflection f two Non-Conducting Media, Plane Incidence, on of EM Waves Between Parallel Conducting , TEM Mode, Rectangular, Circular Waveguide, Electron (Rayleigh Scattering), Coherence	Hours	
3	Unit III		15	
	Inhomogeneous Wave Equation: Electrodynamic Potentials, Gauge Transformation, Lorentz Gauze, Hertz Vector Electro Gauge, Coulomb Gauge, Retarded Advanced Potentials, Electromagnetic Potentials in Electric Magnetic Fields Hertz Solution of Wave Equation			
4	Unit IV		15	
	The Fields of Moving Charges: Retarded Potentials: Lienard-Wiechert Potentials, Radiation Produced by an Oscillating Electric Dipole, Radiation Due to Small Current Element, Half Wave Antenna, Covariant Formulation of Electrodynamics: Energy Momentum Tensors.			
	Suggested Readings			
	 Introduction to Electrodynamics Classical Electrodynamics Classical Theory of Fi Electrodynamics of (Addison-Wesley). Electrodynamics, a. Se Classical Electricity (Addison-Wesley). Feynman Lecturesvol Berkeley Seriesvolum Electricity Magnetism Introduction to Electrodynamics. Electrodynamics. 	 bdynamics, D. J. Griffiths (Frentice Hall). mics, J. D. Jackson (John Wiley). elds, L.D. Lau E.M.Lifshitz(Addison- Wesley). Continuous Media, L.D. Lau E. M. Lifshitz omerfield (Academic Press, Freeman co.). Magnetism, W.K.H. Panofsky M.Phillips I. II. R. P. Feynman, Leighton S S(Narosa). e II, E. M. Purcell (McGraw-Hill). , Reitz, Milford Christy (Pearson). rodynamics, A. Z. Capri P.V. Panat (Narosa 		
	Course Outcomes: The Students will be able to Equations, The Electromagne of Electromagnetic Waves wi of Moving Charges the Covar	Understand the Significance of Maxwell's Field tic Waves in Free Space Matter, The Interaction th Matter, Inhomogeneous Wave Equation, Field iant Formulation of Electrodynamics.		

	Course Code:	Course Title: Lab Course-6				
	MSPHLB202P	Minimum Number of Experiments to be Performed				
		Reported in the Journal $=$ 04				
	Course Credit: 2	Total Contact Hours: 60 Hours				
Sr. No.	Course Contents (Topics & Subtopics)					
1	Lattice Parameter & Pa	article Size Determination.				
2	Skin Depth in Al Using	g Electromagnetic Radiation.				
3	To Determine the Transition Capacitance of a Varactor Diode Use it as a Variable					
	Capacitor.	apacitor.				
4	End Point Energy Absorption Coefficient Using G. M. Tube.					
5	'E' by Millikan Oil Drop Method.					
6	Zeeman Effect.					
7	Measurement of Refractive Index of Liquids Using Laser.					
8	Energy B Gap of Semiconductor Using Four Probe Method.					
9	I-V/ C-V Measurement on Semiconductor Specimen.					
10	To Study the Nature of Polarization of Laser Light Using Photo Cell Quarter Wave Plate.					
11	Fabry-Parot Etalon.					
12	Study of Magneto Resistance in Semiconductors.					
13	Time Independent	Schrodinger Equation. Shooting Method Using				
	OCTAVE/SCILAB/MA	ATLAB				
14	Wavepacket Construct	ion Using OCTAVE/SCILAB/MATLAB				
15	Determination of Eiger OCTAVE/SCILAB/M	n Values Eigen Vectors of a Square Matrix Using ATLAB				

	Course Code: MSPHCC203T	Course Title: Atomic and Molecular Physics		
	Course Credit: 4 Total Contact Hours: 60 Hours			
Sr. No.	Course Contents (Topics &Subtopics)			
1	Unit I			
	The Atom Model for two Valence Electrons:			
	Coupling Schemes: L-L Coupling, S-S Coupling, LS or Russell -			
	Saunder's Coupling; The	Pauli Exclusion Principle, Coupling Schemes		
	for two Electrons, Tau-J	factors for LS Coupling, Le Interval Rule, JJ-		
	Coupling, Branching Ru	iles, Selection Rules. Spectral Terms, Hund's		
2	Kule, Steren-Gerlach Exp	beriment.	15	
	Unit II Zaaman Effaat Dasahar	Deals Effect and Stark Effect.	15 Hours	
	Electronic Spectroscopy	of Atoms. The Magnetic Moment of the Atom.	nours	
	Zeeman Effect for two-	Electrons Intensity Rules for Zeeman Effect		
	Paschen-Back Effect for	two Electrons Stark Effect of Hydrogen Weak		
	Field Stark Effect in Hv	drogen. Strong Field Stark Effect in Hydrogen.		
	Origin of Hyperfine Strue	cture.		
3	Unit III		15	
	Microwave Spectroscop	y:	Hours	
	Classification of Molecu	iles: Linear, Symmetric Tops, Spherical Tops,		
	Asymmetric Tops; Rotational Spectra: The Rigid Diatomic Molecule,			
	The Non-Rigid Rotator, Spectrum of a Non-Rigid Rotator, Selection			
	Rules, Chemical Analysis by Microwave Spectroscopy, Techniques			
	Instrumentation of Microwave Spectroscopy.			
4				
	Inira-Ked Spectroscopy: The Energy of a Distomic Molecule. The Simple Harmonic Oscillator			
	The Anharmonic Oscilla	tor. The Diatomic Vibrating-Rotator, Analysis		
	by Infra-Red Spectrosco	ppy. Techniques Instrumentation of Infra-Red		
	Spectroscopy. Raman	Effect, Pure Rotational Raman Spectra,		
	Vibrational Raman Spect	ra, Frank- Condon Principle Applications, NMR		
	Spectrometer, Principle	of Electron Spin Resonance (ESR), ESR		
	Spectrometer, Chemical Shift.			
	Suggested Readings			
	1. Introduction to A	Atomic Spectra – H.E. White, McGraw Hill		
	(1934). 2 Eurodemontale et	f Malagular Spectroscopy Edn 2 CN		
	2. Fundamentals of Banwell Tata Mo	Graw Hill (1983)		
	3 Atomic Molecula	r Spectra: Laser- Raikumar Knrn (2012)		
	4. Spectra of Diaton	nic Molecules, Vol. I – G. Herzberg, N.J.D. Van		
	Nostrand (1950).			
	5. Spectroscopy, Vol. I, II, III – B.P. Straughan S. Walker, Chapman			
	Hall (1976).			
	6. Introduction to Molecular Spectroscopy – G.M. Barrow, McGraw			
	Hill (1962).			
	7. Molecular Spectroscopy – J.M. Brown, Oxford University Press			

(1998).	
Course Outcomes:	
The Students will be able to Understand Atomic Molecular Interactions,	
Different Couplings. They will Understand Behaviour of Atoms in	
External Applied Electric Magnetic Field. Students will be able to Learn	
Theory of MWIR Spectroscopic Techniques.	

	Course Code:	Course Title: Lab Course-7			
	MSPHLB203P	Minimum Number of Experiments to be			
		Performed Reported in the Journal $= 04$			
	Course Credit: 2	Total Contact Hours: 60 Hours			
Sr. No.	Course Contents (Topics & Subtopics)				
1	BCD-to-Decimal Decoder Converter Us	ing IC74HC42, IC7447.			
2	Code Converter Using IC Using IC-74LS138.				
3	Gun Diode Characteristics.				
4	Differential Amplifier Using Transistor/ OPAMP.				
5	Study of Sample Hold Circuit.				
6	DIAC- TRIAC Phase Control Circuit.				
7	Instrumentation Amplifier its Applications.				
8	Adder-Subtractor Circuits Using ICs.				
9	Draw Input Output Characteristics of a	MOSFET.			
10	To Design Op Amp Differentiator Integ Wave Form.	grator, Generate Sawtooth, Square Rectangular			

	Course Code: MSPHIE201T	Course Title: Numerical Techniques		
	Course Credit: 4	Total Contact Hours: 60 Hours		
Sr. No.	Course Contents (Topics & Subtopics)			
1				
	Machine Language Program, Assembly Language Program, Assembler, Disadvantages of Machine Assembly Language Programming, High			
	Simple Flowcharts, S Variables, Data Ty	Structure of a C Program, Header Files, Constant pes Their Declarations, Operators Arithmetic		
	Operators, Relationa Operators, Conditiona Functions for Intege	al Operators, Logical Operators, Assignment al Operator. Built in Functions in C, Input / Output er, Floating Points, Characters Strings. Control		
	Statements-If, If-Else go to Statement. I Arrays- One Dimens Definition Declaration	, Do-While. for Loop, Nested If Nested for Loops, Library Functions- Mathematical Trigonometric. ional two- Dimensional. User Defined Functions-		
	File Handling- Opera Unions Pointers Are N	tion with Files, Opening Closing a File. (Structures Not Expected)		
2	Unit II		15	
	Roots of Equation: P Roots of Polynomia Method, Newton Rap of Least Squares Fit Fitting an Exponentia Interpolation, Differ Interpolation Formula	olynomial Transcendental Equation, Limits for the al Equation, Bisection Method, False Position hson Method, Direct Substitution Method. Principle Method, fitting a Straight Line, fitting a Parabola, I Curve, Fitting Curve of the Form Y=Ax ^b . Linear rence Schemes, Newton's Forward Backward , Lagrange's Interpolation Formula.	Hours	
3	Unit III		15	
	Numerical Integratio Simpson's One Thi Quadratics Method, Equations: Gaussian Pivotal Condensation Seidel Iteration Me Eigenvalues Eigenvec	n - Newton Cotes Formula, Trapezoidal Rule, ird Rule, Simpson's three Eight Rule, Gauss Monte Carlo Method. Solution of Simultaneous Elimination Method, Gaussian Elimination with Method, Gauss-Jordan Elimination Method, Gauss- thod, Gauss-Jordan Matrix Inversion Method. etors of Matrices-Power Jacobi Method	Hours	
4	Unit IV		15	
	Solution of Ordinary Euler's Method, Ru Predictor-Corrector M Differential Equation Difference Equation Elliptic, Parabolic Hy	7 Differential Equation - Taylor Series Method, inge-Kutta Method, Milne's Adams Bashforth Methods. Classification of Second Order Partial n, Solution of Partial Differential Equation- Method Over a Rectangular Domain for Solving perbolic Partial Differential Equation.	Hours	
	Suggested Readings			
	 Computer Oric Introductory M Numerical C 	ented Numerical Methods, Rajaraman, Phi. Iethod of Numerical Analysis, Sastry. omputational Method, P.B. Patil, U.P. Verma		

(Narosa Publication New Delhi).	
4. Programming in Ansi C, Balgurusamy, Tata Mcgraw Hill.	
5. Numerical Methods for Scientists Engineers, by H. M. Antia.	
6. Numerical Methods for Scientists Engineers, by H. M. Antia.	
Course Outcomes:	
On completion of the course students will be able to apply numerical	
techniques which have enormous application in the field of science some	
fields of engineering. The students will be familiar with numerical	
integration differentiation, numerical solution of ordinary differential	
equations, solving set of simultaneous equations with c programming.	

	Course Code:	Course 7	Title: Lab C	Course-	8		
	MSPHLB204P	Minimu	m Number	of Expe	eriments to	be Perform	ned
		Reported	d in the Jour	rnal = 0	4		
	Course Credit: 2	Total Co	ontact Hours	s: 60 Ho	ours		
Sr. No	Course Contents (Topics & Subtopics)						
1	Write Execute a C Com	puter Pro	gram for Le	ast Squ	ares Fit M	ethod.	
2	Write Execute a C Com	puter Pros	gram for Ni	imerica	I Integratio	on by	
-	Trapezoidal Rule.						
3	Write Execute a C Computer Program for Numerical Integration by						
	Simpson's 1/3 rd Rule.						
4	Write Execute a C Computer Program for Numerical Integration by						
	Monte Carlo Method.						
5	Write Execute a C Computer Program for Solution of Ordinary						
	Differential Equation by Runge-Kutta Method.						
6	Write Execute a C Computer Program to Read two Matrices from a File,						
	Store Them in a two-Dimensional Array, Take Their Multiplication Store						
	Result in a File.						
7	Write Execute a C Computer Program to Find a Root of a Given Equation						
	Using Bisection Method	1. C 1 /	T T '	.1	F 1		T T '
8	The Pendulum:	Solution	Using	the	Euler	Method	Using
0	UCIAVE/SUILAB/MAILAB						
9 10	The Dendulum	AVE/SCI	LAD/MATL	the	Fular	Mathad	Uning
10	OCTAVE/SCILAB/MAT		Using	the	Euler	Method	Using
11	Determination of Roots	of Polyne	mials MAT	LAB			
12	Determination of Fr	equency	Response	of a	Transfer	Function	Using
14	OCTAVE/SCILAB/MAT	LAB	1190P 01100	51 U	1 10110101	- 411001011	20116

	Course Code: MSPHSE201T	Course Title: Renewable Energy Sources	
	Course Credit: 4	Total Contact Hours: 60 Hours	
Sr. No.	Course Contents (Topics &Subtopics)		
1	Unit I		
	Introduction to Energy Sour	·ces:	Hours
	Energy Consumption as Mea	sure of Prosperity, World Energy Future, Fossil	
	Fuels Their Availability, No	n-Conventional Energy Sources: Solar Energy,	
	Wind Energy, Biomass Energ	y,	
	Solar Energy: Sun as the Sol	alor Padiations, Solar Spectral Irradiance, Solar	
	Radiation Geometry Mea	surement Techniques of Solar Radiations	
	Estimation of Average Solar I	Radiation	
2	Unit II		15
-	Solar Thermal Solar and Ph	otovoltaic Systems:	Hours
	Solar Thermal Systems: Solar	r Collectors, Solar Water Heaters, Solar Heating	
	Cooling, Solar Refrigeration	n Air Conditioning, Solar- Cookers, Dryers,	
	Distillation. Solar Photovoltai	c: Solar Cell, Characteristics of Solar Cell, Solar	
	Cell Array Panel Construction	, PV Systems Applications.	
3	Unit III		15
	Wind Energy Geothermal E	nergy:	Hours
	Wind Energy: Origin Class	ification of Winds, Aerodynamics of Windmill:	
	Maximum Power, Forces on the Blades Thrust on Turbines; Wind Data		
	Collection Field Estimation	n of Wind Energy, Site Selection, Basic	
	Wind Energy Systems: Wind	+ Dy: the Present Indian Scenario	
	Ceothermal Energy: Origi	n Distribution of Geothermal Energy Types	
	Analysis of Geothermal Reso	surces Exploration Development of Geothermal	
	Resources, Applications, Geo	thermal Energy in India.	
4	Unit IV	87	15
	Ocean Energy and Miscellar	eous Non-Conventional Energy Sources:	Hours
	Tidal Energy, Wave Energy	Ocean Thermal Energy Conversion, Magneto	
	Hydrodynamic Power Cor	version, Thermoelectric Power Conversion,	
	Thermionic Power Conversion	n, Fuel Cells, Hydrogen Energy.	
	Suggested Readings		
	1. Energy Sources" by G	D. Rai, Khanna Publications.	
	2. Non-Conventional En	ergy Resources, by B. H. Khan, McGraw Hill	
	Education.		
	3. Solar Energy, by S P Sukhatme, J K Nayak, McGraw Hill Education.		
	After completion of the court	se students will able a understand the different	
	energy sources, renewable en	ergy its importance. They will be exposed to the	
	use of solar wind energy. Stu	dents will learn ocean geothermal energy how it	
	will be harvested. Understand	ling of different energy technologies will also be	
	covered.		
